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Faddeev equations are considered in the case of three charged particles interact-
ing with both separable nuclear two-body interactions and also including Coulomb
forces. Modified Faddeev equations with Coulomb Green'’s functions are intro-
duced. The three-body amplitudes are given into pure Coulomb and distorted-
Coulomb amplitudes. Introducing a decomposition in the angular momentum
states, a set of three-body integral equations is obtained. The effect of pure
coulomb amplitudes is studied in direct nuclear reactions and found to give a
farge contribution to the cross sections. The three-body integral equations
obtained are applied for direct nuclear reactions. The angular distributions for
2C(°Li, d)'¢0, '*O(°Li, d)™°Ne, and '"*C(°Li, «)'*N transfer reactions are
calculated as well as for the °Li elastic scattering on '*C. From the good
agreement between the theoretically calculated and experimental data, better
spectroscopic factors are extracted. The effect of including Coulomb forces in the
three-body problem is found to improve the results by about 16.26%.

1. INTRODUCTION

One of the most interesting three-body problems is that of Coulomb
forces. Separable potentials have been shown to be useful in solving the
three-body problem. The Coulomb force is of quite different nature. The
inclusion of Coulomb forces in the three-body problem has been considered
by several authors (Schulman, 1967; Noble, 1967; Alt et al. 1967; Nutt,
1968; Hamza and Edwards, 1969; Osman, 1971a). In all these approaches
for a system of three charged particles, it is necessary to know the two-body
Coulomb T matrix off the energy shell. Schulman (1967) suggests approxi-
mating the Coulomb Green’s functions in momentum space. Another
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suggestion is the improved version of the Schulman approximation based on
the Yamaguchi potential. In all cases, the Faddeev kernels (Faddeev, 1960;
1961; 1962) still contain the two-body Coulomb 7 matrix. Including
Coulomb forces in the three-body system introduces modified Faddeev
equations and Coulomb Green’s functions (Osman, 1971a). This approach
1s applied for different three-body problems (Osman, 1971a; 1977; 1978a—c;
1979).

In the present work, the Coulomb forces are included in the three-body
problem to be applied for direct nuclear reactions. We consider a system of
three interacting, charged particles. The nuclear two-body interactions are
taken as nonlocal separable potentials. The two-body Coulomb forces are
included. Coulomb Green’s functions are defined by approximating the
Coulomb wave functions in momentum space. This is done keeping in mind
that (Noble, 1967) the Coulomb potentials act for distances which are much
larger than the ranges of the other interactions involved in the problem. We
follow here the Faddeev-Lovelace (Faddeev, 1965; Lovelace, 1964) for-
malism. Modified Faddeev equations are obtained which form a set of
coupled integral equations. The obtained equations are manageable and are
suitable for computation.

In the present work, we consider the direct transfer nuclear reactions
2C(°Li, d)'°0, "*O(°Li, d)*Ne, and '>*C(°Li, «)'*N. In these reactions, the
projectile nucleus °Li is taken as a cluster composition of a deuteron and an
alpha particle. Thus, we have in the initial channel a three-body problem of
the three charged interacting particles, the deuteron, the alpha particle, and
the target nucleus. Two of these particles are bound (the deuteron and the
alpha particles, forming the projectile *Li nucleus), and the third particle is
free (the target nucleus, '2C for the first and third reactions and '°O for the
second reaction). In the final channel, we also have a three-body problem of
three charged interacting particles, two of which are bound (the transferred
particle with the target nucleus, forming the residual nucleus), and the third
particle is free (the outgoing particle). In the final channels of the three
reactions considered, the transferred alpha particle is bound with the '2C
nucleus forming '®O in the first reaction and the alpha particle is bound to
the 'O target forming °Ne in the second reaction while in the third
reaction, the transferred deuteron is bound with the '2C target forming the
'“N nucleus. Numerical calculations are performed for the integral equa-
tions obtained, including the Coulomb forces between the interacting par-
ticles. Differential cross sections for these direct transfer nuclear reactions
are calculated. Also, the ®Li elastic scattering on '>C is considered. Angular
distributions are compared with the experimental measurements. From the
fitting of angular distributions between the theoretical and experimental
data, the spectroscopic factors are extracted.
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In Section 2, we introduce the three-body integral equations including
Coulomb forces. Calculations and results are presented in Section 3. Section
4 is devoted to discussion and conclusions.

2. THREE-BODY EQUATIONS INCLUDING COULOMB
FORCES

Considering the system of the charged three particles to be labeled by
1, 2, and 3 with masses m,, m,, and m, and with momentak , k,, and k5 in
the center of mass of the three-body system. Following the Faddeev—
Lovelace formalism (Lovelace, 1964), p,. p,, and p, are the center of mass
momenta of the (2,3), (3,1), and (1,2) pairs and q,, q,, and q, are the
momenta of particle 1 relative to the subsystem (2,3), of particle 2 relative
to the (3,1) subsystem, and of particle 3 relative to the (1,2) subsystem and
given by

9

p,:(m3k2—m2k3)/[2m2m3(m2+m3)]l/“ (1)
and
q,= [ml(kZ +k;) — (m, +m3)k,]/[2ml(m2 +my)(m +my+ ”’3)]1/2
(2)
Then the system has a kinetic energy in the center-of-mass system as
Hy=pi+aqi (3)

with similar forms for p,, q, and p;,q, by cyclic permutations of 1, 2, and 3.
The total Hamiltonian of the three particle system is given by

H=Hy+U+V (4)

where U is the sum of the Coulomb potentials and ¥ is the sum of the
short-range nuclear interactions. In the present work, we neglect the three-
body Coulomb potential, and then U is the sum of the two-body Coulomb
potentials.

Now, introducing the two-body Coulomb Green’s functions as

GAZ)=(H,+U;—Z)"" (5)
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Then we get

(PGS Z)|P},a;) = 8(a; —a, )P GS(Z — 7)) (6)
which can be written as

e (p V) (il )
g} +k*-2

(#,.0,1G5(2) P 4) = 8(a; ~a,) [ (7)

The Coulomb wave function (p|y, ) in momentum space will be peaked
when p, coincides in direction and magnitude with the integral variable in
equation (6), and then the Coulomb Green’s function can be transformed to
coordinate system as (Schulman, 1967)

Ju®)fp)dp = (k) [y (p)d’p
= 0[], - (8)

where [¥(r)],—, is the Coulomb wave function in configuration space and
is given by

[qff(r)],=0=[ ()

27 172
exp(27n,, ) —1

N =ty Z;Ze*/k is the Coulomb parameter, Z; and Z, are the charge
numbers of the particles j and &, and p is the reduced mass of the (j, k)
subsystem.

Using a Yamaguchi (1954a, b) form for the wave function with a form
factor given by

(lpy=g(p)=N, (10)

Pi2 + Biz
Then, the matrix element for the Coulomb Green’s functions is given by

(P:»9:|G(Z)|p;.q;) ~8(p,—p;)8(q; —q))

X I[‘I'pc.(’)],:oeXP[znjk‘a“_l(qf/Bi)]'2
pite -2

(11)
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With this definition for the Coulomb Green’s functions, we can proceed to
obtain the two-body amplitudes containing both of the nuclear and Coulomb
potentials. If the short-range nuclear potentials are taken to have a
Yamaguchi type (1954a, b), as a nonlocal separable potential, we can write

V=i (12)

V, is the two-particle short-range nuclear potential between the particles j
and k(V),). Then the two-particle amplitudes including both of the nuclear
and Coulomb potentials are defined in the three-particle Hilbert space as

T(2)=V,+V,GUZ)T(Z) (13)

which, with the separable form for the potentials V; given by equation (12),
have solutions as

@I T(Z)|a) = iXa,][(i|G5(2)
X Go(q? — ENiyx(Z— a2 —E)] @)l (14)
where
Go(Z)=(H,—2)"" (15)

and i, j, k =1,2,3 in cyclic permutation. Then the corresponding three-body
equations can be given as a set of coupled integral equations. In obtaining
these equations, we follow the Faddeev-Lovelace formalism.

In addition to the pure Coulomb amplitudes, other three-body ampli-
tudes must be added. These amplitudes are the on-the-energy-shell ampli-
tudes. Following also the Faddeev-Lovelace formalism and after a lengthy
mathematical work which has no place here, we get

f(Z)= = (1-8,)|G5(Z)|»)
— S D[N+ IGS(2) ]

X{1=8,,)(B|GH(Z)|») (16)

Let us introduce the notations

B,(Z)=(1=8,)(|GL(Z)|v) (17)
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and

— =1
Y(Z)=[A; ' +(rIGUZ) |w)] (18)
Thus equation (16) is given as

flZ)= = B.(Z)= 2/(Z)Y(Z)B,(Z) (19)

For the pure Coulomb contributions, we neglect the three-body pure
Coulomb forces and we only consider contributions from two-body Coulomb
forces. In addition to the pure Coulomb contribution, we must add the
three-body amplitudes given by equation (19). The expression given by
equation (19) is an integral equation with three-dimensional integral. To
simplify it, we use partial wave analysis which helps in eliminating two of
the variables of integration. The partial wave analysis 1s introduced as

@D =S @I+1)Pcos8)[Uq.q': Z) (20)
1=0

where § is the angle between g and g’. Also we have for B, (Z) the partial
wave expansion

[ o]

<<IIB,-.,(Z)I(I'):/E (21+1)P,(cos8)B;,(q.9"; Z) (21)
=0

Using equations (20) and (21), then equation (19) is reduced in partial waves
to a form given by

fi9.952) =~ BlAa. 9’ 2)~4n 3 [q7%dq" fi(q.9"; Z)
n

XY(q";Z)B/(q',q"; Z) (22)

The expression given by equation (22) is a one-dimensional integral equa-
tion.

For direct transfer nuclear reactions, the differential cross section is
given by

io‘;f: mi’;‘f k_f 21z +1)
% (27h?)’ ki (21p+1)

2 [{Zi1r> Irpr; Q| fiflq,; T 1RNR>|2
LT

HcbR (23)
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which represent a transition from the initial channel / (of incident projectile
I and target nucleus T), to a final channel f (of outgoing particle C and
residual nucleus R). m ; and m , are the reduced masses of the initial and
final channels, respectively. /; and p, are the spin and its projection of the
particle i. We neglect here the isospin since the Coulomb force breaks
isospin symmetry.

3. CALCULATIONS AND RESULTS

In the present work, we are interested in calculating the effect of
including Coulomb forces in the three-body problem. The presently ob-
tained expressions are applied to direct transfer nuclear reactions. An
interesting example to show this effect is the °Li induced reactions with
alpha particle transfer or with deuteron transfer. The ®Li projectile is
considered as a cluster structure (Wildermuth & McClure, 1966; Rotter,
1966) of bound state of an alpha particle and a deuteron with binding
energy of 1.47 MeV. The parameters of the two-particle interactions for the
separable potentials given by equation (10) are determined from the two-
body data. N, are determined by normalizing the corresponding wave
function giving

NP =B/ (e +B) /n? (24)

where ¢, is the binding energy of the i pair particles. Then 8, and N, are
determined independently to fit the i pair (the bound state of the j and k
particles), data of binding energy ¢, and scattering length.

Performing numerical integrations, the bound-state poles are obtained
by defining the A,’s at the corresponding binding energy for each pair of
particles. We follow in the present calculations for performing the numerical
integrations, the Kopal (1955) method. This method is used in computing
the different A;’s and also in the partial wave analysis by solving the
integrals given by equation (22). These integrals are replaced by a 36-point
mesh.

Numerical calculations for ¢ Li-induced reactions with direct transfer of
alpha particle or a deuteron are performed. The differential cross sections
for °Li stripping reactions are calculated using the obtained integral equa-
tions. A comparison of the angular distributions with the experimental data
of Becchetti et al. (1978) for the reaction '2C(°Li, 4)'°0O, of Anantaraman et
al. (1979) for the reaction '*O(°Li, d)*Ne, and of White et al. (1973, 1975)



348 Osman

“c(*Li,@)*0

ELi =42 MeV
Ground - state

J o

0.001 L L | 1 { | L i |
0 20

40 60 80 100 121 140 160 180
Ocm {deg)

Fig. 1. The angular distributions of the °Li stripping reaction '>C(°Li, )'®O at ®Li incident
energy of 42 MeV leaving the '*O nucleus in its ground state. The solid curve is our present
calculations. The dashed curve is calculated according to our previous model introduced in
Osman (1971b, 1972). The experimental data are taken from Becchetti et al. (1978).

for the reaction '>C(°Li, «)'*N are introduced in Figures 1-3, respectively.
The alpha particle transfer reaction '*C(°Li, 4)'°O shown in Figure 1 is
performed at °Li incident energy of 42 MeV. The *O(°Li, d )**Ne reaction
with alpha particle transfer shown in Figure 2 is performed at ®Li incident
energy of 32 MeV. For the deuteron transfer reaction '>C(°Li, «)'*N shown
in Figure 3, the ®Li projectile energy is 33 MeV. To compare the present
results including Coulomb forces with calculations which do not contain the
Coulomb forces, numerical calculations are done for three-body problem of
°Li induced reactions using a model introduced by us (Osman, 1971b;
1972). The calculations due to the present work are shown by solid curves
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Fig. 2. The angular distributions of the ®Li stripping reaction '®O(°Li, ¢)*Ne at ®Li incident
energy of 32 MeV leaving the °Ne nucleus in its ground state. The solid curve is our present
calculations. The dashed curve is calculated according to our previous model introduced in
Osman (1971b, 1972). The experimental data are taken from Anantaraman et al. (1979).

on Figures 1-3, while calculations due to our previous model (Osman,
1971b; 1972) are shown by dashed curves. Also, the elastic scattering of °Li
particle on '?C target at °Li incident energy of 42 MeV is shown in Figure 4.
The agreement between the present theoretically calculated values and the
experimental measurements are good as shown in Figures 1-4. Spectro-
scopic factors are extracted from both calculations for the purpose of
comparison, and are listed in Table I. From the values of the spectroscopic
factors, we see that the effect of including the Coulomb forces in the
three-body problem in the case of ®Li-induced reactions is improving the
results by a percentage of between 11.7254% and 24.1560%.
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Fig. 3. The angular distributions of the °Li stripping reaction '">C(°Li, «)'*N at °Li inciden
energy of 33 MeV leaving the "N nucleus in its ground state. The solid curve is our presen
calculations. The dashed curve is calculated according to our previous model introduced i
Osman (1971b, 1972). The experimental data are taken from White (1973) and White et al
(1975).

4. DISCUSSION AND CONCLUSIONS

In the present work we solved the three-body problem of three interac
ing charged particles. The Coulomb forces are included in the three-bod
equations. The obtained three-body amplitudes are given into pure Coulom
amplitudes and distorted-Coulomb amplitudes. The obtained equations a
a set of coupled integral equations. These integral equations are manageab
for computational calculations. The obtained integral equations are numei
cally calculated and applied to direct transfer nuclear reactions. Strippii
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Fig. 4. The angular distributions of the ®Li elastic scattering reaction on '*C at ¢Li incident
energy of 42 MeV. The solid curve is our present calculations. The dashed curve is calculated
according to our previous model introduced in Osman (1971b, 1972). The experimental data
are taken from Becchetti et al. (1978).

TABLE I. Extracted Spectroscopic Factors

Incident  Excitation

energy energy Spectroscopic factors Spresent /Sprevious
Reaction (MeV) (MeV) J7  Present work Our previous model” (%)
2¢eLi, dy'%0 42 00 0% 08916 0.7834 11.7254
l60( Li, d)*Ne 32 0.0 0 0.8684 0.7632 12.8953
C(°Li, a)"*N 33 0.0 1t 0.9428 0.7396 24.1560

""See Osman (1971b, 1972).
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reactions with ®Li projectiles are shown in Figures 1-3. The agreement
between the theoretical and experimental angular distributions is good. The
calculated differential cross sections give the typical stripping pattern,
showing an increase in the forward and backward angles with some peaks in
between. For the ®Li elastic scattering calculations shown in Figure 4, the
absolute values of the predicted cross sections are in qualitative agreement
with the experimental values. The backward peak appeared in Figures 1-4,
is one of the characteristics of an exchange mechanism. The Coulomb forces
improve the results by a percentage of about 16.2589%, which is not small
and so Coulomb forces are very important and must be included in the
three-body calculations.

Thus, we can conclude that the present three-body treatment of direct
reaction mechanism gives the shape of angular distributions, but with more
structure than that given by the Born approximation. Also, it takes into
account explicitly the nonadiabatic effects of the interaction. Since the
equations obtained have the form of Lippmann-Schwinger equations, they
are thus an exact optical model. This makes the present model a good
theory of direct transfer nuclear reactions, but rather it is an exact theory
which has the essential Born approximation of direct transfer nuclear
reactions.
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