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Faddeev equations are considered in the case of three charged particles interact- 
ing with both separable nuclear two-body interactions and also including Coulomb 
forces. Modified Faddeev equations with Coulomb Green's functions are intro- 
duced. The three-body amplitudes are given into pure Coulomb and distorted- 
Coulomb amplitudes. Introducing a decomposition in the angular momentum 
states, a set of three-body integral equations is obtained. The effect of pure 
coulomb amplitudes is studied in direct nuclear reactions and found to give a 
large contribution to the cross sections. The three-body integral equations 
obtained are applied for direct nuclear reactions. The angular distributions for 
12C(6Li, d)160, 160(6Li, d)2~ and 12C(6Li, a)I4N transfer reactions are 
calculated as well as for the 6Li elastic scattering on '2C. From the good 
agreement between the theoretically calculated and experimental data, better 
spectroscopic factors are extracted. The effect of including Coulomb forces in the 
three-body problem is found to improve the results by about 16.26%. 

1. I N T R O D U C T I O N  

One of  the most  in teres t ing  th ree -body  p rob lems  is that  of  C o u l o m b  
forces. Separab le  po ten t ia l s  have been  shown to be useful in solving the 
th ree-body  prob lem.  The  C o u l o m b  force is of  qui te  d i f ferent  nature.  The  
inc lus ion of  C o u l o m b  forces in the th ree -body  p rob l em has been cons idered  
by several  au thors  (Schulman,  1967; Noble ,  1967; A l t  et al. 1967; Nut t ,  
1968; H a m z a  and Edwards ,  1969; Osman,  1971a). In  all these approaches  
for a system of  three charged  par t ic les ,  it is necessary to know the two-body  
C o u l o m b  T mat r ix  off the energy shell. Schulman  (1967) suggests approx i -  
ma t ing  the C o u l o m b  Green ' s  funct ions  in m o m e n t u m  space. A n o t h e r  
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suggestion is the improved version of the Schulman approximation based on 
the Yamaguchi potential. In all cases, the Faddeev kernels (Faddeev, 1960; 
1961; 1962) still contain the two-body Coulomb T matrix. Including 
Coulomb forces in the three-body system introduces modified Faddeev 
equations and Coulomb Green's functions (Osman, 1971a). This approach 
is applied for different three-body problems (Osman, 1971a; 1977; 1978a-c; 
1979). 

In the present work, the Coulomb forces are included in the three-body 
problem to be applied for direct nuclear reactions. We consider a system of 
three interacting, charged particles. The nuclear two-body interactions are 
taken as nonlocal separable potentials. The two-body Coulomb forces are 
included. Coulomb Green's functions are defined by approximating the 
Coulomb wave functions in momentum space. This is done keeping in mind 
that (Noble, 1967) the Coulomb potentials act for distances which are much 
larger than the ranges of the other interactions involved in the problem. We 
follow here the Faddeev-Lovelace (Faddeev, 1965; Lovelace, 1964) for- 
malism. Modified Faddeev equations are obtained which form a set of 
coupled integral equations. The obtained equations are manageable and are 
suitable for computation. 

In the present work, we consider the direct transfer nuclear reactions 
12C(6Li, d)W60, t60(6Li, d)2~ and 12C(6Li, a)14N. In these reactions, the 
projectile nucleus 6Li is taken as a cluster composition of a deuteron and an 
alpha particle. Thus, we have in the initial channel a three-body problem of 
the three charged interacting particles, the deuteron, the alpha particle, and 
the target nucleus. Two of these particles are bound (the deuteron and the 
alpha particles, forming the projectile 6Li nucleus), and the third particle is 
free (the target nucleus, ~2C for the first and third reactions and 160 for the 
second reaction). In the final channel, we also have a three-body problem of 
three charged interacting particles, two of which are bound (the transferred 
particle with the target nucleus, forming the residual nucleus), and the third 
particle is free (the outgoing particle). In the final channels of the three 
reactions considered, the transferred alpha particle is bound with the 12C 
nucleus forming 160 in the first reaction and the alpha particle is bound to 
the 160 target forming 2~ in the second reaction while in the third 
reaction, the transferred deuteron is bound with the 12C target forming the 
14N nucleus. Numerical calculations are performed for the integral equa- 
tions obtained, including the Coulomb forces between the interacting par- 
ticles. Differential cross sections for these direct transfer nuclear reactions 
are calculated. Also, the 6Li elastic scattering on 12C is considered. Angular 
distributions are compared with the experimental measurements. From the 
fitting of angular distributions between the theoretical and experimental 
data, the spectroscopic factors are extracted. 
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In Section 2, we introduce the three-body integral equations including 
Coulomb forces. Calculations and results are presented in Section 3. Section 
4 is devoted to discussion and conclusions. 

2. THREE-BODY EQUATIONS INCLUDING COULOMB 
FORCES 

Considering the system of the charged three particles to be labeled by 
1, 2, and 3 with masses rn~, m2, and m 3 and with momenta k~, k 2, and k 3 in 
the center of mass of the three-body system. Following the Faddeev- 
Lovelace formalism (Lovelace, 1964), p~, P2, and P3 are the center of mass 
momenta of the (2,3), (3,1), and (1,2) pairs and ql, q2, and q3 are the 
momenta of particle 1 relative to the subsystem (2,3), of particle 2 relative 
to the (3, 1) subsystem, and of particle 3 relative to the (1,2) subsystem and 
given by 

P, = (m3k 2 _ rnzk3) /[2rn2rn3(rn  2 + m3)] ,/2 (i) 

and 

q, = [m,(k2 +k3)  _ (m  2 + m3 ) k , ] / [ 2 m , ( r n  2 + rn3)(m ' + rn2 + m3 )] ,/2 

(2) 

Then the system has a kinetic energy in the center-of-mass system as 

Ho = p2 + q~ (3) 

with similar forms for N, q2 and P3,q3 by cyclic permutations of 1, 2, and 3. 
The total Hamiltonian of the three particle system is given by 

M = H o + U + V  (4) 

where U is the sum of the Coulomb potentials and V is the sum of the 
short-range nuclear interactions. In the present work, we neglect the three- 
body Coulomb potential, and then U is the sum of the two-body Coulomb 
potentials. 

Now, introducing the two-body Coulomb Green's functions as 

aS( z )= ( Ho + % -  z ) - '  (5) 
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Then we get 

<p,,qi[G~(Z)[p~,q'~>=8(q'~-q,)<P, IG~(Z-q2)lp;> (6) 

which can be written as 

d3k(pi I p;) (p,,q~ IGC(Z) I p:, q;) = 8(q;. -q,)f q 2 + k 2 - Z  (7) 

The Coulomb wave function (Pl q',) in momentum space will be peaked 
when p~ coincides in direction and magnitude with the integral variable in 
equation (6), and then the Coulomb Green's function can be transformed to 
coordinate system as (Schulman, 1967) 

f q,,(p)f(p)d3p -~ f(k) f q~,(p)d3p 

= f(k)[ ' l 'C(r)]  ~= o (8) 

where ['t'C(r)]r=0 is the Coulomb wave function in configuration space and 
is given by 

_[ 
[~t tC(r)]  r=  0 -  [ e x p ( 2 - ~ j k )  _ 1 (9) 

~jk =ll/kZjZke2/k is the Coulomb parameter, Zj and Z k are the charge 
numbers of the particlesj and k, and #/k is the reduced mass of the ( j ,  k)  
subsystem. 

Using a Yamaguchi (1954a, b) form for the wave function with a form 
factor given by 

1 
(iIP,) = g,(P,)  = N , . - -  (10) 9 2 

Pi + fli 

Then, the matrix element for the Coulomb Green's functions is given by 

(p,, q, [ G~(Z) [ p;, q'~) ~ ( p , -  p;)8(q,-q~.) 

x 
[ ~ ( r ) ]  r = oeXp[2~jk tan-~(qi/B,)]  2 

(11) 
+ q?-  z 
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With this definition for the Coulomb Green's functions, we can proceed to 
obtain the two-body amplitudes containing both of the nuclear and Coulomb 
potentials. If the short-range nuclear potentials are taken to have a 
Yamaguchi type (1954a, b), as a nonlocal separable potential, we can write 

E = x , I , ) ( i l  (12) 

V, is the two-particle short-range nuclear potential between the particles j 
and k(Vjk). Then the two-particle amplitudes including both of the nuclear 
and Coulomb potentials are defined in the three-particle Hilbert space as 

~. (z )  = v,. + E c ~ ( z ) r , . ( z )  (13) 

which, with the separable form for the potentials V,. given by equation (12), 
have solutions as 

(q,iT~( Z )lq'~) : l i ) (q, l [  ( i lG~( Z ) 

XGo(qT-E,)l i)X(Z-qT-E,)]- ' lq'~)(i  [ (14) 

where 

6 o ( Z )  = (/40 - z ) - '  (15) 

and i, j ,  k = 1,2, 3 in cyclic permutation. Then the corresponding three-body 
equations can be given as a set of coupled integral equations. In obtaining 
these equations, we follow the Faddeev-Lovelace formalism. 

In addition to the pure Coulomb amplitudes, other three-body ampli- 
tudes must be added. These amplitudes are the on-the-energy-shell ampli- 
tudes. Following also the Faddeev-Lovelace formalism and after a lengthy 
mathematical work which has no place here, we get 

f , . , , ( z )  = - ( 1 -  a,v)(i lG~(Z)l~, ) 

- E. t ; . , , (z ) [x ; '  + ( f f l a g ( Z ) l f f ) ] - '  
u. 

x (1 - ,~ , , , ) (~ lc~(z)  I,,) (16) 

Let us introduce the notations 

B,.(Z) ( 1 -  �9 c = 8 , , )QIGjk (Z) Iv  ) (17) 
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and 

r.(z)=[x;' 
Thus equation (16) is given as 

f i . (Z)  = -- B , ~ ( Z ) -  ~,,fi~,(Z)Yu(Z)B,,,(Z ) 
/t 

(18) 

(19) 

For the pure Coulomb contributions, we neglect the three-body pure 
Coulomb forces and we only consider contributions from two-body Coulomb 
forces. In addition to the pure Coulomb contribution, we must add the 
three-body amplitudes given by equation (19). The expression given by 
equation (19) is an integral equation with three-dimensional integral. To 
simplify it, we use partial wave analysis which helps in eliminating two of 
the variables of integration. The partial wave analysis is introduced as 

( q l f ~ . ( Z ) l q ' ) =  ~ (2l+l)Pt(cosO)ff~(q,q';Z) (20) 
I = 0  

where O is the angle between q and q'. Also we have for B,,(Z) the partial 
wave expansion 

(qlBi,,(Z)lq') = ~ (21+ l)Pl(cosO)B[.(q.q'; Z) 
/ = 0  

(21) 

Using equations (20) and (2 I), then equation (19) is reduced in partial waves 
to a form given by 

+ '" Z ) - 4 ~ ' ~  f "2d ,,:1+ q,,; f . ,(q,q , Z ) = - - B f . ( q , q ' ;  j q  q J i t ~ t q ,  Z) 
ix 

X Y~(q , t , q,,; "" Z)B/,~(q, Z) (22) 

The expression given by equation (22) is a one-dimensional integral equa- 
tion. 

For direct transfer nuclear reactions, the differential cross section is 
given by 

d o l l  __ m i m/ k/ (2I  R + 1) 
(2 h2)2 k, (2Ir+l).,ixT I(l' ''lT T;qlf':lq"Ic c' rR R)l" 

~cixR (23) 
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which represent a transition from the initial channel i (of incident projectile 
I and target nucleus T), to a final channel f (of outgoing particle C and 
residual nucleus R). m~ and my are the reduced masses of the initial and 
final channels, respectively. I~ and/~ are the spin and its projection of the 
particle i. We neglect here the isospin since the Coulomb force breaks 
isospin symmetry. 

3. CALCULATIONS AND RESULTS 

In the present work, we are interested in calculating the effect of 
including Coulomb forces in the three-body problem. The presently ob- 
tained expressions are applied to direct transfer nuclear reactions. An 
interesting example to show this effect is the 6Li induced reactions with 
alpha particle transfer or with deuteron transfer. The 6Li projectile is 
considered as a cluster structure (Wildermuth & McClure, 1966; Rotter, 
1966) of bound state of an alpha particle and a deuteron with binding 
energy of 1.47 MeV. The parameters of the two-particle interactions for the 
separable potentials given by equation (10) are determined from the two- 
body data. N~ are determined by normalizing the corresponding wave 
function giving 

2 _ 1/2 1/2 +B,13/  2 ( 2 4 )  

where e i is the binding energy of the i pair particles. Then fl~ and N, are 
determined independently to fit the i pair (the bound state of the j and k 
particles), data of binding energy e i and scattering length. 

Performing numerical integrations, the bound-state poles are obtained 
by defining the ~i's at the corresponding binding energy for each pair of 
particles. We follow in the present calculations for performing the numerical 
integrations, the Kopal (1955) method. This method is used in computing 
the different ~ ' s  and also in the partial wave analysis by solving the 
integrals given by equation (22). These integrals are replaced by a 36-point 
mesh. 

Numerical calculations for 6Li-induced reactions with direct transfer of 
alpha particle or a deuteron are performed. The differential cross sections 
for 6Li stripping reactions are calculated using the obtained integral equa- 
tions. A comparison of the angular distributions with the experimental data 
of Becchetti et al. (1978) for the reaction 12C(6Li, d)160, of Anantaraman et 
al. (1979) for the reaction 160(6Li, d)Z~ and of White et al. (1973, 1975) 
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Fig. 1. The angular distributions of the 6Li stripping reaction 12C(6Li, d)lro at 6Li incident 
energy of 42 MeV leaving the 160 nucleus in its ground state. The solid curve is our present 
calculations. The dashed curve is calculated according to our previous model introduced in 
Osman (1971b, 1972). The experimental data are taken from Becchetti et al. (1978). 

for the reaction 12C(6Li, ot)14N are introduced in Figures 1-3, respectively. 
The alpha particle transfer reaction 12C(6Li, d)160 shown in Figure 1 is 
performed at 6Li incident energy of 42 MeV. The 160(rLi, d)Z~ reaction 
with alpha particle transfer shown in Figure 2 is performed at 6Li incident 
energy of 32 MeV. For the deuteron transfer reaction ]2C(6Li, a)14N shown 
in Figure 3, the 6Li projectile energy is 33 MeV. To compare the present 
results including Coulomb forces with calculations which do not contain the 
Coulomb forces, numerical calculations are done for three-body problem of 
6Li induced reactions using a model introduced by us (Osman, 1971b; 
1972). The calculations due to the present work are shown by solid curves 
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Fig. 2. The angular distributions of the 6Li stripping reaction 160(6Li, d)Z~ at 6Li incident 
energy of 32 MeV leaving the Z~ nucleus in its ground state. The solid curve is our present 
calculations. The dashed curve is calculated according to our previous model introduced in 
Osman (1971b, 1972). The experimental data are taken from Anantaraman et al. (1979). 

on Figures 1-3, while calculations due to our previous model (Osman, 
1971b; 1972) are shown by dashed curves. Also, the elastic scattering of 6Li 
particle on ]zC target at 6Li incident energy of 42 MeV is shown in Figure 4. 
The agreement between the present theoretically calculated values and the 
experimental measurements are good as shown in Figures 1-4. Spectro- 
scopic factors are extracted from both calculations for the purpose of 
comparison, and are listed in Table I. From the values of the spectroscopic 
factors, we see that the effect of including the Coulomb forces in the 
three-body problem in the case of 6Li-induced reactions is improving the 
results by a percentage of between 11.7254% and 24.1560%. 
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Fig. 3. The angular distributions of the 6Li stripping reaction ~2C(6Li, a)14N at 6Li inciden 
energy of 33 MeV leaving the 14N nucleus in its ground state. The solid curve is our presen 
calculations. The dashed curve is calculated according to our previous model introduced fi 
Osman (1971b, 1972). The experimental data are taken from White (1973) and White et a[ 
(1975). 

4. DISCUSSION AND CONCLUSIONS 

In the present work we solved the three-body problem of three interac' 
ing charged particles. The Coulomb forces are included in the three-bod 
equations. The obtained three-body amplitudes are given into pure Coulom 
amplitudes and distorted-Coulomb amplitudes. The obtained equations a] 
a set of coupled integral equations. These integral equations are manageab 
for computational calculations. The obtained integral equations are numeJ 
cally calculated and applied to direct transfer nuclear reactions. Strippi] 
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Fig. 4. The angular distributions of the 6Li elastic scattering reaction on 12C at 6Li incident 
energy of 42 MeV. The solid curve is our present calculations. The dashed curve is calculated 
according to our previous model introduced in Osman (1971b, 1972). The experimental data 
arc taken from Becchetti et al. (1978). 

TABLE I. Extracted Spectroscopic Factors 

=a$ee Osman ( 1971 b, 1972). 

Incident Excitation 
energy energy Spectroscopic factors Spre~nt/Sprcvious 

Reaction (MeV) (MeV) j~r Present work Our previous model" (%) 

t2C(6Li, d)160 42 0,0 0 + 0.8916 0.7834 11.7254 
t60(6Li, d)2~ 32 0,0 0 + 0.8684 0.7632 12.8953 
t2C(6Li, a)14N 33 0,0 1 + 0.9428 0.7396 24.1560 

'7-- 
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reactions with 6Li projectiles are shown in Figures 1-3.  The agreement  
between the theoretical and experimental angular distributions is good. The 
calculated differential cross sections give the typical stripping pattern, 
showing an increase in the forward and backward angles with some peaks in 
between. For  the 6Li elastic scattering calculations shown in Figure 4, the 
absolute values of the predicted cross sections are in qualitative agreement  
with the experimental values. The backward peak appeared in Figures 1-4,  
is one of  the characteristics of  an exchange mechanism. The Coulomb forces 
improve the results by a percentage of  about  16.2589%, which is not small 
and so Coulomb forces are very impor tant  and must  be included in the 
three-body calculations. 

Thus, we can conclude that the present three-body treatment of  direct 
reaction mechanism gives the shape of  angular distributions, but  with more 
structure than that given by the Born approximation.  Also, it takes into 
account  explicitly the nonadiabat ic  effects of  the interaction. Since the 
equations obtained have the form of L ippmann-Schwinge r  equations, they 
are thus an exact optical model. This makes the present model a good 
theory of direct transfer nuclear reactions, but  rather it is an exact theory 
which has the essential Born approximat ion of direct transfer nuclear 
reactions. 
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